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Abstract
The scaling limit as T → 0 of the antiferromagnetic three-state Potts model
on the square lattice is described by the sine–Gordon quantum field theory at
a specific value of the coupling. We show that the correspondence follows
unambigously from an analysis of the sine–Gordon operator space based on
locality, and that the scalar operators carrying solitonic charge play an essential
role in the description of the lattice model. We then evaluate the correlation
functions within the form factor approach and give a number of universal
predictions that can be checked in numerical simulations.

PACS numbers: 0550, 7550E, 7510, 6460, 1110

The study of antiferromagnetic models is a notoriously difficult problem of statistical
mechanics. The dependence on the lattice structure produces a variety of behaviours
much richer than in the ferromagnetic case and forces a case-by-case analysis. Many
antiferromagnetic models possess a critical point (often at zero temperature), so that their
continuum limit can also be investigated through field theoretical methods. Among them, the
square-lattice three-state Potts model has been the object of both numerical and theoretical
studies. While this model has been known for a long time to be critical at zero temperature,
the issue of the approach to criticality presents several subtleties, including the identification
of the correct scaling variable. Very recently, the authors of [1] exploited a mapping onto a
height model to identify the excitations on the lattice at nonzero temperature and explain the
anomalous corrections to scaling previously observed in Monte Carlo studies [2].

It is the purpose of this Letter to point out that the scaling limit of the square-lattice three-
state Potts antiferromagnet is exactly solvable due to its equivalence to a specific point of the
sine–Gordon model (an integrable quantum field theory), and to derive from this continuum
approach some universal predictions that can be checked through simulations on the lattice.

As often happens for two-dimensional systems exhibiting a Gaussian critical point, a
relation of the scaling limit to the sine–Gordon model is expected. The actual task is that
of understanding what the symmetries and the operators of the lattice model become in the
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field theoretic language. Here we will show that these identifications follow in a quite natu-
ral way from the analysis of the sine–Gordon operator space based on locality, and that the
topologically charged scalar operators play a major role in the continuum description of the
lattice model. Matrix elements for these operators were first computed in [3], where they
arise in the description of the scaling Ashkin–Teller model. We will then illustrate how the
correspondence at the operatorial level translates in the language of particle excitations, in
order to exploit the exact S-matrix solution of the sine–Gordon model and extract from that
the correlation functions for the operators of physical interest. In particular, we will give a
number of specific and universal predictions suitable for a numerical verification on the lattice.

The three-state Potts model is defined by the lattice Hamiltonian

H = −J
∑
〈i,j〉

δsi ,sj (1)

where the spin variable sj on the j th lattice site takes the values (colours) 0, 1 and 2 and
the sum is over nearest neighbours. The Hamiltonian is invariant under permutations of the
colours. Here we are interested in the antiferromagnetic case (J < 0) on the square lattice.

At zero temperature, the system is in one of the ground states in which nearest-neighbour
spins have different values. This problem is equivalent to the three-colouring problem of
the square lattice, which admits an exact mapping onto a specific point of the six-vertex
model [4, 5]. From the exact solution of the latter we know that our zero-temperature system
is critical and that its long-distance behaviour is described by a free massless boson. Relevant
operators that can be identified through the zero-temperature analysis on the lattice [6–9] are
the staggered magnetization �j = (−1)j1+j2 e2iπsj /3 with scaling dimension 1/6, the uniform
magnetization σj = e2iπsj /3 with scaling dimension 2/3, and the staggered polarization1

Pj = (−1)j1+j2
∑′

i (2δsi ,sj − 1) with scaling dimension 3/2. We identify the j th site of the
square lattice through a pair of integers (j1, j2), and call the collection of the sites with j1 + j2

even (odd) the even (odd) sublattice.
At non-zero temperature, the model develops a finite correlation length and its scaling limit

is described by the perturbation of the Gaussian fixed point through the continuum version of
the thermal operator Ej = ∑

i δsi ,sj . This perturbed theory is the sine–Gordon model defined
by the Euclidean action2

A =
∫

d2x
(

1
2 ∂αϕ∂

αϕ − µ cosβϕ
)

(2)

for some value of the coupling β to be determined. The theory (2) describes the scaling limit of
several lattice models whose critical point corresponds to a conformal field theory with central
charge C = 1 (see e.g. [3, 10] for other examples discussed in the framework of this Letter).
In order to proceed with the description of the antiferromagnetic Potts model we need to recall
a few points about the operator content of the sine–Gordon model.

At criticality (µ = 0), the boson field can be decomposed into its holomorphic and
antiholomorphic parts as ϕ(x) = φ(z) + φ̄(z̄), where we have introduced the complex
coordinates z = x1 + ix2 and z̄ = x1 − ix2. The scaling operators of the theory are the
vertex operators

Vp,p̄(x) = ei[pφ(z)+p̄φ̄(z̄)] (3)

1 The primed sum indicates summation over the next nearest neighbours of j .
2 Throughout this Letter we use the standard notation β for the sine–Gordon dimensionless coupling. No confusion
with the inverse temperature of the lattice model should be made.
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with conformal dimensions (�, �̄) = (p2/8π, p̄2/8π) and spin s = �− �̄. They satisfy the
Gaussian operator product expansion

Vp1,p̄1(x)Vp2,p̄2(0) = zp1p2/4π z̄p̄1p̄2/4π Vp1+p2,p̄1+p̄2(0) + · · · . (4)

We see from this relation that taking Vp1,p̄1(x) around Vp2,p̄2(0) by sending z → ze2iπ and
z̄ → z̄e−2iπ produces a phase factor e2iπγ1,2 , where

γ1,2 = 1

4π
(p1p2 − p̄1p̄2) (5)

is called the index of mutual locality. If γ1,2 is an integer the correlator 〈Vp1,p̄1(x)Vp2,p̄2(0)〉
is single valued and the two operators are said to be mutually local. Since γ1,1 = 2s, the
operators which are local with respect to themselves (the only ones we are interested in here)
must have integer or half-integer spin.

In the off-critical theory (2), the operators which are local with respect to the perturbing
operator cosβϕ ∼ Vβ,β + V−β,−β form a ‘local sector’ into which all the operators of interest
for the description of the lattice model are expected to fall. This locality requirement selects
the operators Vp,p̄ with p − p̄ = 4πm/β, m integer, namely

Vp(x) ≡ Vp,p(x) = eipϕ(x) (6)

and

Un,m(x) ≡ V nβ

2m + 2π
β
m,

nβ

2m− 2π
β
m(x) = ei[ nβ2m ϕ(x)+

2π
β
mϕ̃(x)]

n = 2s = 0,±1, . . . m = ±1, . . . . (7)

Here we have introduced the ‘dual’ boson field ϕ̃, which is φ(z) − φ̄(z̄) at criticality and
satisfies the relation

i
∂ϕ̃

∂xα
= εαβ

∂ϕ

∂xβ
. (8)

The operators Vp and U0,m are scalars (s = 0) and have scaling dimensions Xp = p2/4π
and X0,m = πm2/β2, respectively (X = � + �̄). The action (2) describes a relevant
perturbation of the Gaussian fixed point for β2 < 8π ; in this range the only operators U0,m

which are relevant (X0,m < 2) are those with |m| � 3.
The lowest operators with |s| = 1/2, i.e. $ = U±1,1 and $∗ = U±1,−1, are complex

conjugate two-component spinors with conformal dimensions �n,m given by

�±1,1 = �±1,−1 = 1

8

(
β2

4π
± 2 +

4π

β2

)
(9)

�̄±1,1 = �̄±1,−1 = 1

8

(
β2

4π
∓ 2 +

4π

β2

)
. (10)

It has been known since Coleman [11] that the sine–Gordon model is equivalent to the theory
of a Dirac fermion with four-fermion interaction, the Thirring model. The expression for
$ concides with the bosonization formula for the Thirring fermion originally derived by
Mandelstam [12]. The value β2 = 4π for which the dimensions (9) and (10) take the free
fermionic values corresponds to the free point of the Thirring model.

It follows from these considerations that the integer m in (7) is a fermionic charge. Since
the Thirring fermions correspond to the solitons interpolating between adjacent vacua of the
periodic bosonic potential, we will also call m the topologic charge. Hence, we can make a
distinction between neutral scalar operators Vp(x) with a non-zero vacuum expectation value,
and charged scalar operators U0,m(x).
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Table 1. Relevant operators on the lattice and their continuum counterparts in the sine-Gordon
model.

Lattice Continuum Topologic
% definition limit X% charge

E ∑
i δsi ,sj cos

√
6πϕ 3/2 0

� (−1)j1+j2 e2iπsj /3 ei
√

2π/3 ϕ̃ 1/6 1

σ e2iπsj /3 e−2i
√

2π/3 ϕ̃ 2/3 −2

P (−1)j1+j2
∑′
i (2δsi ,sj − 1) cos

√
6π ϕ̃ 3/2 ±3

Going back to the Potts model it is not difficult to identify the continuum limit of the lattice
operators among the sine–Gordon operators. Both the staggered and uniform magnetization are
charged with respect to colour permutations and must be found among the U0,m. Comparison
with the known scaling dimensions gives �(x) ∼ U0,1(x) and σ(x) ∼ U0,−2(x), and selects

β =
√

6π (11)

as the value for which the sine–Gordon model (2) describes the scaling limit of the three-state
Potts antiferromagnet on the square lattice. This immediately fixes the scaling dimension of
the thermal operator E(x) ∼ cosβϕ(x) to be 3/2, in agreement with the result obtained in [1]
by studying the vortex excitations on the lattice.

On the basis of these identifications we can see how the symmetries of the lattice
model translate in the sine–Gordon language. The group S3 of colour permutations can be
decomposed into theZ3 transformations associated with cyclic permutations plus the complex
conjugation of e2iπsj /3. The latter operation simply corresponds to the complex conjugation
of the sine–Gordon exponentials, while the elementary Z3 transformation maps into the shift
ϕ̃ → ϕ̃ + 2π/β. The Z3 charge coincides with the topologic charge m (mod 3).

The lattice operators are also characterized by their parity under the transformation which
exchanges the even and odd sublattices: Ej and σj are even, while �j and Pj are odd. It
appears that in the continuum limit this parity property corresponds to (−1)m. The staggered
polarization Pj is invariant under colour permutations and must correspond to the operator
U0,3 +U0,−3, which has indeed the expected scaling dimension 3/2. We summarize the situa-
tion in table 1.

The equivalence with a particular case of the sine–Gordon model ensures that the scaling limit
of the lattice model is an integrable quantum field theory whose associated scattering theory
is known exactly [13]. The elementary excitations are a pair of conjugated particles A+ and
A− (the sine–Gordon soliton and antisoliton). The fact that β2 = 6π falls in the repulsive
sine–Gordon regime β2 > 4π ensures that no other particles are present in the spectrum. It can
be interesting to mention that theZ3-preserving fusionA+A+ → A− is forbidden here because
it violates the sublattice parity (−1)m; it is instead characteristic of the scattering theory of the
ferromagnetic case [14, 15] in which the lattice plays no role.

Due to the factorization of multiparticle scattering in the integrable quantum field theories,
the scattering theory is completely determined by the two-particle S-matrix defined by the
relation3

Aa(θ1)Ab(θ2) =
∑
c,d=±

Scdab(θ1 − θ2)Ad(θ2)Ac(θ1) a, b = ±. (12)

3 The rapidity θ parametrizes the on-shell energy and momentum of a particle as (p0, p1) = (m cosh θ,m sinh θ).
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The non-zero scattering amplitudes are given by4 [13]

S++
++(θ) = S−−

−−(θ) = S0(θ) (13)

S+−
+−(θ) = S−+

−+(θ) = −
sinh πθ

ξ

sinh π
ξ
(θ − iπ)

S0(θ) (14)

S−+
+−(θ) = S+−

−+(θ) = −
sinh iπ2

ξ

sinh π
ξ
(θ − iπ)

S0(θ) (15)

with

S0(θ) = − exp

{
−i

∫ ∞

0

dx

x

sinh x
2

(
1 − ξ

π

)
sinh xξ

2π cosh x
2

sin
θx

π

}
(16)

ξ = πβ2

8π − β2
. (17)

From the S-matrix one can compute the form factors5

F%a1,...,an
(θ1, . . . , θn) = 〈0|%(0)|Aa1(θ1), . . . , Aan(θn)〉 ai = ± (18)

which in turn determine the spectral decomposition of the correlation functions. The form
factors satisfy the equations [16–18]

F%a1,...,ai ,ai+1,...,an
(θ1, . . . , θi, θi+1, . . . , θn)

=
∑

bi ,bi+1=±
Sbi ,bi+1
ai ,ai+1

(θi − θi+1)F
%
a1,...,bi+1,bi ,...,an

(θ1, . . . , θi+1, θi, . . . , θn) (19)

F%a1,...,an
(θ1 + 2iπ, θ2, . . . , θn) = e2iπγ%,a1F%a2,...,an,a1

(θ2, . . . , θn, θ1) (20)

where γ%,a in the last equation is the index of mutual locality between the scalar operator%(x)
and the soliton (for a = +) or the antisoliton (for a = −). Since these particles are created by
the operators U0,±1(x), equation (5) gives for the scalar operators

γVp,± = γVp;U0,±1 = ±p
β

(21)

γU0,m;± = γU0,m;U0,±1 = 0. (22)

Equations (19) and (20) can be used to determine the ‘lowest’ form factors for the operator
%, i.e. the non-vanishing matrix elements (18) with the smallest n (n > 0)which fix the initial
conditions of the form factor bootstrap6. The lowest form factors for the operators of interest
in this Letter are

F
cosβϕ
±∓ (θ1, θ2) = c0

cosh θ12
2

sinh π
2ξ (θ12 − iπ)

F0(θ12) (23)

F
U0,m

−sg(m),...,−sg(m)(θ1, . . . , θ|m|) = c|m|
∏
i<j

F0(θij ) (24)

where θij ≡ θi − θj , sg(m) denotes the sign ofm and the cm are normalization constants. The
function

F0(θ) = −i sinh
θ

2
exp

{∫ ∞

0

dx

x

sinh
[
x
2

(
1 − ξ

π

)]
sinh xξ

2π cosh x
2

sin2 (iπ−θ)x
2π

sinh x

}
(25)

4 For reasons that will become clear later, it is useful to give the results referring to generic values of β in the
sine–Gordon model, it being understood that the scaling limit we are dealing with corresponds to β = √

6π .
5 |0〉 is the vacuum state.
6 The higher form factors contain additional pairs A+(θ)A−(θ ′) in the asymptotic state and are related to the lowest
ones by a recursive equation associated with particle–antiparticle annihilation [17].
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satisfies the equations

F0(θ) = S0(θ)F0(−θ) (26)

F0(θ + 2iπ) = F0(−θ). (27)

The lowest form factors determine the first term in the large-distance expansion of the
correlation functions. Using the subscript c to denote the connected correlators we have

〈Vp(x)Vp(0)〉c =
∫

dθ1

2π

dθ2

2π
|FVp+,−(θ1, θ2)|2 e−M|x|(cosh θ1+cosh θ2) + O(e−4M|x|) (28)

〈U0,m(x)U0,−m(0)〉 = 1

m!

∫
dθ1

2π
· · · dθm

2π
|FU0,m

−···−(θ1, . . . , θm)|2 e−M|x| ∑m
i=1 cosh θi

+O(e−(m+2)M|x|) (29)

where M is the mass of the soliton and we have taken m > 0.

There are a number of simple and distinguished universal predictions of the sine–Gordon
description that can be tested in numerical simulations of the square-lattice three-state Potts
antiferromagnet. The ‘exponential’ and ‘second-moment’ correlation lengths ξ% and ξ 2nd

%

associated with an operator %(x) are defined as

〈%(x)%∗(0)〉c ∼ exp(−|x|/ξ%) |x| → ∞ (30)

ξ 2nd
% =

(
1

4

∫
d2x |x|2 〈%(x)%∗(0)〉c∫

d2x 〈%(x)%∗(0)〉c

)1/2

. (31)

The leading behaviour of these quantities near the critical point is

ξ% � f% t
−ν (32)

ξ 2nd
% � f 2nd

% t−ν (33)

where ν = 1/(2 − XE) = 2, and t measures the deviation from criticality. It appears from
numerical simulations [2] and has been discussed in [1] that for this zero-temperature critical
point the scaling variable is t = eJ/kT . Our operator identifications and equations (28), (29)
then give ξ� = 1/M and

fσ /f� = 1
2 (34)

fE/f� = 1
2 (35)

fP/f� = 1
3 (36)

f 2nd
� /f� ≈ 1 (37)

f 2nd
σ /fσ ≈ 0.439. (38)

The last two ratios are evaluated in the lowest form factor approximation, which is known to
give extremely accurate results for integrated correlators7. We estimate that our error on these
two quantities does not exceed 1%.

The universal ratios (34)–(38) have not yet been measured in simulations. Lattice estimates
of these quantities would provide the direct confirmation that the universality class of this
antiferromagnet is described by the sine–Gordon field theory with β = √

6π and the operator
identifications of table 1. In this respect, it is important to mention that the study of the
scaling limit of the model on the lattice is complicated in practice by strong corrections to
scaling [1, 2]. Cardy et al argued in [1] that such corrections are originated by a strictly
marginal operator, which couples to the temperature giving an effective thermal dependence

7 See e.g. [3, 10] for similar computations in other sine–Gordon-related statistical models.
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to the stiffness K of the bosonic field, which is related to the sine–Gordon coupling as
β = 6

√
K . Their estimate of this (nonuniversal) dependence for Keff(t) corresponds to

β2
eff(t) = 6π − 20.9(4)t − 37.8(2)t2 + · · ·. Hence, according to this analysis, the leading

corrections to scaling can be fitted by letting the critical exponents and the critical amplitudes
vary with βeff . Concerning the lattice verification of our predictions, the ratios (34)–(37)
are not affected by this effect since their values in the sine–Gordon model are determined
by symmetry properties of the operators which do not depend on the coupling8. The ratio
(f 2nd
σ /fσ )eff is instead an increasing function of βeff , so the asymptotic value (38) should be

approached from below as t → 0. For example, we find 0.38 when computing this ratio at
β2

eff(t = 0.1) ∼ 6π − 2.47.

I thank John Cardy for helpful discussions and remarks.

Note added. When this work had been completed [19] appeared, which is devoted to the form factors of the sine–Gordon
topologically charged operators and whose main purpose is the determination of their ‘conformal’ normalization.
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